Photoluminescence and photoluminescence excitation studies of lateral size effects in Zn1−xMnxSe/ZnSe quantum disc samples of different radii
نویسنده
چکیده
Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared from a Zn0.72Mn0.28Se/ZnSe single quantum well structure by electron beam lithography followed by an etching procedure which combined dry and wet etching techniques. The quantum disc structures and the parent structure were studied by photoluminescence and photoluminescence excitation spectroscopy. For the light-hole excitons in the quantum well region, shifts of the energy positions are observed following fabrication of the discs, confirming that strain relaxation occurs in the pillars. The light-hole exciton lines also sharpen following disc fabrication: this is due to an interplay between strain effects (related to dislocations) and the lateral size of the discs. A further consequence of the small lateral sizes of the discs is that the intensity of the donor-bound exciton emission from the disc is found to decrease with the disc radius. These size-related effects occur before the disc radius is reduced to dimensions necessary for lateral quantum confinement to occur but will remain important when the discs are made small enough to be considered as quantum dots.
منابع مشابه
Simulating far infrared spectra of Zn1-xMnxSe/GaAs epifilms, MnSe/ZnSe superlattices and predicting impurity modes of N, P defects in Zn1-xMnxSe
A comprehensive lattice dynamical study is reported to emphasize the vibrational behavior of perfect/imperfect zinc-blende (zb) ZnSe, MnSe and Zn1-xMnxSe alloys. Low temperature far-infrared (FIR) reflectivity measurements performed on a series of molecular beam epitaxy grown Zn1-xMnxSe/GaAs (001) epilayers have a typical 'intermediate-phonon-mode' behavior. Besides perceiving ZnSe- and MnSe-li...
متن کاملCdSe quantum dots grown on ZnSe and Zn0.97Be0.03Se by molecular-beam epitaxy: Optical studies
We report detailed studies of the photoluminescence ~PL! properties of CdSe quantum dots ~QDs! grown on ZnSe and Zn0.97Be0.03Se by molecular-beam epitaxy. We performed steady-state and time-resolved PL measurements and observed that nonradiative processes dominate at room temperature ~RT! in the CdSe/Zn0.97Be0.03Se QD structures while these nonradiative processes do not dominate in the CdSe/ZnS...
متن کاملOne-Step Solvent-Free Synthesis and Characterization of Zn1[minus]xMnxSe[commat]C Nanorods and Nanowires
The carbon-encapsulated, Mn-doped ZnSe (Zn1 xMnxSe@C) nanowires, nanorods, and nanoparticles are synthesized by the solvent-free, one-step RAPET (reactions under autogenic pressure at elevated temperature) approach. The aspect ratio of the nanowires/nanorods is altered according to the Mn/Zn atomic ratio, with the maximum being observed for Mn/Zn1⁄4 1:20. A 10–20 nm amorphous carbon shell is ev...
متن کاملThe Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods
In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کامل